URIError in ZM-Log after usage of zm_detect_py

Discussions related to the 1.36.x series of ZoneMinder
Post Reply
Godot
Posts: 13
Joined: Fri Jul 10, 2020 7:07 am

URIError in ZM-Log after usage of zm_detect_py

Post by Godot »

I tried to get Zoneminder to work on Ubuntu 18.04 with zmeventnotification without GPU support.

I have installed Zoneminder 1.36.21, ES 6.1.28, face_recognition 1.3.0, Python 3.8.13, pip 22.2.1 and OpenCV 4.6.0.

I haven't activated the ES in Zoneminder yet.
Zoneminder itself works wonderfully. Face training with /var/lib/zmeventnotification/bin/zm_train_faces.py was also successful.

This input on the console:
/var/lib/zmeventnotification/bin/zm_detect.py --config /etc/zm/objectconfig.ini --eventid 23 --monitorid 23 --debug
also runs without errors.
After that, however, a number of these error messages, which only differ by the PID, appear in the Zoneminder log:
web_js 5987 ERR URIError: malformed URI sequence zm/cache/skins_classic_views_js_log-base-1658601075.js 45

The PIDs are all related to "/usr/sbin/apache2 -k start"

Even after a restart, these errors appear in the log

Any hints, what went wrong?
Godot
Posts: 13
Joined: Fri Jul 10, 2020 7:07 am

Re: URIError in ZM-Log after usage of zm_detect_py

Post by Godot »

These are the log entries from zmesdetect_m23.log which are probably responsible for the error:
08/02/22 01:10:31 zmesdetect_m23[6413] INF ZMLog.py:292 [Setting up signal handler for logs]
08/02/22 01:10:31 zmesdetect_m23[6413] INF ZMLog.py:301 [Switching global logger to ZMLog]
08/02/22 01:10:31 zmesdetect_m23[6413] INF zm_detect.py:284 [---------| app:6.1.28, pyzm:0.3.56, ES:6.1.28
, OpenCV:4.6.0|------------]
08/02/22 01:10:31 zmesdetect_m23[6413] INF utils.py:405 [Reading config from: /etc/zm/objectconfig.ini]
08/02/22 01:10:31 zmesdetect_m23[6413] INF utils.py:410 [Reading secrets from: /etc/zm/secrets.ini]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:382 [Secret token found in config: !ZM_PORTAL]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:382 [Secret token found in config: !ZM_USER]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:382 [Secret token found in config: !ZM_PASSWORD]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:382 [Secret token found in config: !ZM_API_PORTAL]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:382 [Secret token found in config: !ML_USER]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:382 [Secret token found in config: !ML_PASSWORD]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:382 [Secret token found in config: !PLATEREC_ALPR_KEY]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG1 utils.py:445 [allowing self-signed certs to work...]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG2 utils.py:455 [Now checking for monitor overrides]
08/02/22 01:10:31 zmesdetect_m23[6413] DBG3 utils.py:522 [Finally, doing parameter substitution]
08/02/22 01:10:31 zmesdetect_m23[6413] INF zm_detect.py:309 [Importing local classes for Object/Face]
08/02/22 01:10:32 zmesdetect_m23[6413] INF zm_detect.py:334 [Connecting with ZM APIs]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 api.py:72 [API SSL certificate check has been disbled]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 api.py:181 [using username/password for login]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 api.py:210 [Using new token API]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 zm_detect.py:342 [using ml_sequence]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 zm_detect.py:354 [using stream_sequence]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 detect_sequence.py:160 [Resetting models, will be loaded on next run]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG3 detect_sequence.py:634 [Using automatic locking as we are switching between models]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 Media.py:51 [Media get SSL certificate check has been disbled]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 Media.py:99 [Using URL 23 for stream]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 Media.py:114 [We will only process frames: ['snapshot', 'alarm']]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 Media.py:137 [No need to start streams, we are picking images from https://10.123.10.2/zm/index.php?view=image&eid=23]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG3 Media.py:271 [Reading https://10.123.10.2/zm/index.php?view=i ... d=snapshot]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG3 api.py:272 [make_request called with url=https://10.123.10.2/zm/index.php?view=i ... d=snapshot payload={} type=get query={'token': None}]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 detect_sequence.py:654 [perf: Starting for frame:snapshot]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 detect_sequence.py:664 [Sequence of detection types to execute: ['object', 'face', 'alpr']]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 detect_sequence.py:669 [============ Frame: snapshot Running object detection type in sequence ==================]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 detect_sequence.py:174 [Skipping TPU object detection as it is disabled]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 detect_sequence.py:178 [Loading sequence: YoloV4 GPU/CPU]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 detect_sequence.py:179 [Initializing model type:object with options:{'name': 'YoloV4 GPU/CPU', 'enabled': 'yes', 'object_config': '/var/lib/zmeventnotification/models/yolov4/yolov4.cfg', 'object_weights': '/var/lib/zmeventnotification/models/yolov4/yolov4.weights', 'object_labels': '/var/lib/zmeventnotification/models/yolov4/coco.names', 'object_min_confidence': 0.3, 'object_framework': 'opencv', 'object_processor': 'gpu', 'gpu_max_processes': 1, 'gpu_max_lock_wait': 100, 'cpu_max_processes': 3, 'cpu_max_lock_wait': 100, 'max_detection_size': '90%', 'disable_locks': 'no'}]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 yolo.py:38 [portalock: max:1, name:pyzm_uid0_gpu_lock, timeout:100]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG3 detect_sequence.py:689 [object has a same_model_sequence strategy of first]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 detect_sequence.py:701 [--------- Frame:snapshot Running variation: #1 -------------]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 yolo.py:136 [detect extracted image dimensions as: 800wx600h]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 yolo.py:50 [Waiting for pyzm_uid0_gpu_lock portalock...]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 yolo.py:52 [Got pyzm_uid0_gpu_lock portalock]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 yolo.py:85 [|--------- Loading "YoloV4 GPU/CPU" model from disk -------------|]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 yolo.py:100 [perf: processor:gpu Yolo initialization (loading /var/lib/zmeventnotification/models/yolov4/yolov4.weights model from disk) took: 170.56 ms]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG2 yolo.py:115 [Setting CUDA backend for OpenCV]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG3 yolo.py:116 [If you did not set your CUDA_ARCH_BIN correctly during OpenCV compilation, you will get errors during detection related to invalid device/make_policy]
08/02/22 01:10:32 zmesdetect_m23[6413] DBG1 yolo.py:160 [|---------- YOLO (input image: 800w*600h, model resize dimensions: 416w*416h) ----------|]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 yolo.py:68 [Released pyzm_uid0_gpu_lock portalock]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG1 yolo.py:185 [perf: processor:gpu Yolo detection took: 4749.36 ms]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 yolo.py:220 [perf: processor:gpu Yolo NMS filtering took: 2.48 ms]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 object.py:66 [core model detection over, got 7 objects. Now filtering]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 object.py:70 [Max object size found to be: 90%]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 object.py:78 [Converted 90% to 432000.0]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 object.py:101 [Ignoring person [255, 322, 273, 342] as conf. level 0.21680845320224762 is lower than 0.3]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 object.py:103 [Returning filtered list of 6 objects.]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:711 [This model iteration inside object found: labels: ['car', 'person', 'car', 'person', 'car', 'car'],conf:[0.5893807411193848, 0.561074435710907, 0.5283361673355103, 0.43574970960617065, 0.3707943856716156, 0.3614358901977539]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:424 [Max object size found to be: 90%]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:432 [Converted 90% to 432000.0]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:448 [No polygons, adding full image polygon: {'name': 'full_image', 'value': [(0, 0), (2560, 0), (2560, 1920), (0, 1920)], 'pattern': None}]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG3 detect_sequence.py:228 [resized polygons x=0.3125/y=0.3125: [{'name': 'full_image', 'value': [(0, 0), (800, 0), (800, 600), (0, 600)], 'pattern': None}]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:car,POLYGON ((358 159, 416 159, 416 197, 358 197, 358 159)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:car[[(358, 159), (416, 159), (416, 197), (358, 197)]]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:person,POLYGON ((463 334, 481 334, 481 372, 463 372, 463 334)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:person[[(463, 334), (481, 334), (481, 372), (463, 372)]]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:car,POLYGON ((547 306, 579 306, 579 350, 547 350, 547 306)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:car[[(547, 306), (579, 306), (579, 350), (547, 350)]]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:person,POLYGON ((390 332, 424 332, 424 364, 390 364, 390 332)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:person[[(390, 332), (424, 332), (424, 364), (390, 364)]]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:car,POLYGON ((412 302, 462 302, 462 336, 412 336, 412 302)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:car[[(412, 302), (462, 302), (462, 336), (412, 336)]]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:car,POLYGON ((306 330, 332 330, 332 346, 306 346, 306 330)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:car[[(306, 330), (332, 330), (332, 346), (306, 346)]]]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:753 [breaking out of same model loop, as matches found and strategy is "first"]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG1 detect_sequence.py:669 [============ Frame: snapshot Running face detection type in sequence ==================]
08/02/22 01:10:37 zmesdetect_m23[6413] DBG2 detect_sequence.py:190 [Skipping TPU face detection as it is disabled]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG1 face_dlib.py:42 [perf: processor:cpu Face Recognition library load time took: 0.00 ms ]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG1 face_dlib.py:50 [Initializing face recognition with model:cnn upsample:1, jitters:0]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG2 face_dlib.py:73 [portalock: max:3, name:pyzm_uid0_cpu_lock, timeout:100]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG1 face_dlib.py:89 [pre-trained faces found, using that. If you want to add new images, remove: /var/lib/zmeventnotification/known_faces/faces.dat]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG3 detect_sequence.py:689 [face has a same_model_sequence strategy of union]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG1 detect_sequence.py:701 [--------- Frame:snapshot Running variation: #1 -------------]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG1 face_dlib.py:164 [|---------- Dlib Face recognition (input image: 800w*600h) ----------|]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG3 face_dlib.py:174 [Face options={'name': 'DLIB based face recognition', 'enabled': 'yes', 'save_unknown_faces': 'yes', 'save_unknown_faces_leeway_pixels': 100, 'face_detection_framework': 'dlib', 'known_images_path': '/var/lib/zmeventnotification/known_faces', 'unknown_images_path': '/var/lib/zmeventnotification/unknown_faces', 'face_model': 'cnn', 'face_train_model': 'cnn', 'face_recog_dist_threshold': '0.6', 'face_num_jitters': '1', 'face_upsample_times': '1', 'gpu_max_processes': 1, 'gpu_max_lock_wait': 100, 'cpu_max_processes': 3, 'cpu_max_lock_wait': 100, 'max_size': 800, 'disable_locks': 'no'}]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG2 face_dlib.py:123 [Waiting for pyzm_uid0_cpu_lock portalock...]
08/02/22 01:10:40 zmesdetect_m23[6413] DBG2 face_dlib.py:125 [Got pyzm_uid0_cpu_lock lock...]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG1 face_dlib.py:206 [perf: processor:cpu Finding faces took 40890.57 ms]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG1 face_dlib.py:141 [Released pyzm_uid0_cpu_lock portalock]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG1 face_dlib.py:218 [perf: processor:cpu Computing face recognition distances took 0.99 ms]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 detect_sequence.py:711 [This model iteration inside face found: labels: [],conf:[]]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 detect_sequence.py:424 [Max object size found to be: 90%]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 detect_sequence.py:432 [Converted 90% to 432000.0]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 detect_sequence.py:770 [We did not find any face matches in frame: snapshot]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG1 detect_sequence.py:669 [============ Frame: snapshot Running alpr detection type in sequence ==================]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 detect_sequence.py:672 [Making sure we have matched one of ['car', 'motorbike', 'bus', 'truck', 'boat'] in ['car', 'person', 'car', 'person', 'car', 'car'] before we proceed]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 alpr.py:24 [Initializing ALPR:Platerecognizer cloud with options:{'name': 'Platerecognizer cloud', 'enabled': 'yes', 'alpr_api_type': 'cloud', 'alpr_service': 'plate_recognizer', 'alpr_key': 'your_plate_recognizer_api_key', 'platrec_stats': 'yes', 'platerec_min_dscore': 0.1, 'platerec_min_score': 0.2, 'max_size': 1600, 'disable_locks': 'no'}]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 alpr.py:24 [Initializing ALPR:Platerecognizer cloud with options:{'name': 'Platerecognizer cloud', 'enabled': 'yes', 'alpr_api_type': 'cloud', 'alpr_service': 'plate_recognizer', 'alpr_key': 'your_plate_recognizer_api_key', 'platrec_stats': 'yes', 'platerec_min_dscore': 0.1, 'platerec_min_score': 0.2, 'max_size': 1600, 'disable_locks': 'no'}]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG1 alpr.py:141 [PlateRecognizer ALPR initialized with url: https://api.platerecognizer.com/v1]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG3 detect_sequence.py:689 [alpr has a same_model_sequence strategy of first]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG1 detect_sequence.py:701 [--------- Frame:snapshot Running variation: #1 -------------]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG1 alpr.py:50 [Supplied object is not a file, assuming blob and creating file]
08/02/22 01:11:21 zmesdetect_m23[6413] DBG2 alpr.py:54 [resizing image blob to 1600]
08/02/22 01:11:29 zmesdetect_m23[6413] ERR alpr.py:219 [Plate recognizer rejected the upload with 403 Client Error: Forbidden for url: https://api.platerecognizer.com/v1/plate-reader and body:b'{"detail":"Invalid token.","status_code":403}']
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 alpr.py:251 [Exiting ALPR with labels:[]]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 detect_sequence.py:711 [This model iteration inside alpr found: labels: [],conf:[]]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 detect_sequence.py:424 [Max object size found to be: 90%]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 detect_sequence.py:432 [Converted 90% to 432000.0]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 detect_sequence.py:770 [We did not find any alpr matches in frame: snapshot]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG3 Media.py:271 [Reading https://10.123.10.2/zm/index.php?view=i ... &fid=alarm]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG3 api.py:272 [make_request called with url=https://10.123.10.2/zm/index.php?view=i ... &fid=alarm payload={} type=get query={'token': None}]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG1 detect_sequence.py:654 [perf: Starting for frame:alarm]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG1 detect_sequence.py:664 [Sequence of detection types to execute: ['object', 'face', 'alpr']]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG1 detect_sequence.py:669 [============ Frame: alarm Running object detection type in sequence ==================]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG3 detect_sequence.py:689 [object has a same_model_sequence strategy of first]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG1 detect_sequence.py:701 [--------- Frame:alarm Running variation: #1 -------------]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 yolo.py:136 [detect extracted image dimensions as: 800wx600h]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 yolo.py:50 [Waiting for pyzm_uid0_gpu_lock portalock...]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG2 yolo.py:52 [Got pyzm_uid0_gpu_lock portalock]
08/02/22 01:11:29 zmesdetect_m23[6413] DBG1 yolo.py:160 [|---------- YOLO (input image: 800w*600h, model resize dimensions: 416w*416h) ----------|]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 yolo.py:68 [Released pyzm_uid0_gpu_lock portalock]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG1 yolo.py:185 [perf: processor:gpu Yolo detection took: 3978.47 ms]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 yolo.py:220 [perf: processor:gpu Yolo NMS filtering took: 3.00 ms]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:66 [core model detection over, got 7 objects. Now filtering]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:70 [Max object size found to be: 90%]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:78 [Converted 90% to 432000.0]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:101 [Ignoring car [547, 306, 579, 350] as conf. level 0.2730107307434082 is lower than 0.3]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:101 [Ignoring car [412, 302, 462, 336] as conf. level 0.27173566818237305 is lower than 0.3]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:101 [Ignoring car [306, 330, 332, 346] as conf. level 0.26961156725883484 is lower than 0.3]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:101 [Ignoring car [380, 150, 440, 188] as conf. level 0.25052833557128906 is lower than 0.3]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 object.py:103 [Returning filtered list of 3 objects.]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:711 [This model iteration inside object found: labels: ['person', 'person', 'person'],conf:[0.5385230779647827, 0.45212042331695557, 0.4414695203304291]]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:424 [Max object size found to be: 90%]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:432 [Converted 90% to 432000.0]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:person,POLYGON ((463 333, 481 333, 481 369, 463 369, 463 333)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:person[[(463, 333), (481, 333), (481, 369), (463, 369)]]]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:person,POLYGON ((254 321, 274 321, 274 343, 254 343, 254 321)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:person[[(254, 321), (274, 321), (274, 343), (254, 343)]]]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:502 [intersection: object:person,POLYGON ((392 331, 424 331, 424 365, 392 365, 392 331)) intersects polygon:full_image,POLYGON ((0 0, 800 0, 800 600, 0 600, 0 0))]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:518 [Using global match pattern: (person|car|motorbike|bus|truck|bicycle|cat|dog|mouse|bird)]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:526 [full_image intersects object:person[[(392, 331), (424, 331), (424, 365), (392, 365)]]]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 detect_sequence.py:753 [breaking out of same model loop, as matches found and strategy is "first"]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG1 detect_sequence.py:669 [============ Frame: alarm Running face detection type in sequence ==================]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG3 detect_sequence.py:689 [face has a same_model_sequence strategy of union]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG1 detect_sequence.py:701 [--------- Frame:alarm Running variation: #1 -------------]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG1 face_dlib.py:164 [|---------- Dlib Face recognition (input image: 800w*600h) ----------|]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG3 face_dlib.py:174 [Face options={'name': 'DLIB based face recognition', 'enabled': 'yes', 'save_unknown_faces': 'yes', 'save_unknown_faces_leeway_pixels': 100, 'face_detection_framework': 'dlib', 'known_images_path': '/var/lib/zmeventnotification/known_faces', 'unknown_images_path': '/var/lib/zmeventnotification/unknown_faces', 'face_model': 'cnn', 'face_train_model': 'cnn', 'face_recog_dist_threshold': '0.6', 'face_num_jitters': '1', 'face_upsample_times': '1', 'gpu_max_processes': 1, 'gpu_max_lock_wait': 100, 'cpu_max_processes': 3, 'cpu_max_lock_wait': 100, 'max_size': 800, 'disable_locks': 'no'}]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 face_dlib.py:123 [Waiting for pyzm_uid0_cpu_lock portalock...]
08/02/22 01:11:33 zmesdetect_m23[6413] DBG2 face_dlib.py:125 [Got pyzm_uid0_cpu_lock lock...]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 face_dlib.py:206 [perf: processor:cpu Finding faces took 40257.34 ms]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 face_dlib.py:141 [Released pyzm_uid0_cpu_lock portalock]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 face_dlib.py:218 [perf: processor:cpu Computing face recognition distances took 0.86 ms]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG2 detect_sequence.py:711 [This model iteration inside face found: labels: [],conf:[]]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG2 detect_sequence.py:424 [Max object size found to be: 90%]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG2 detect_sequence.py:432 [Converted 90% to 432000.0]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG2 detect_sequence.py:770 [We did not find any face matches in frame: alarm]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 detect_sequence.py:669 [============ Frame: alarm Running alpr detection type in sequence ==================]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG2 detect_sequence.py:672 [Making sure we have matched one of ['car', 'motorbike', 'bus', 'truck', 'boat'] in ['person', 'person', 'person'] before we proceed]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 detect_sequence.py:674 [Did not find pre existing labels, not running detection type]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 detect_sequence.py:827 [perf: TOTAL detection sequence (with image loads) took: 101458.68 ms to process 23]
08/02/22 01:12:13 zmesdetect_m23[6413] INF zm_detect.py:479 [Prediction string:[s] detected:car:59% person:56% ]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 zm_detect.py:481 [Prediction string JSON:{"labels": ["car", "person", "car", "person", "car", "car"], "boxes": [[358, 159, 416, 197], [463, 334, 481, 372], [547, 306, 579, 350], [390, 332, 424, 364], [412, 302, 462, 336], [306, 330, 332, 346]], "frame_id": "snapshot", "confidences": [0.5893807411193848, 0.561074435710907, 0.5283361673355103, 0.43574970960617065, 0.3707943856716156, 0.3614358901977539], "image_dimensions": {"original": [1920, 2560], "resized": [600, 800]}}]
08/02/22 01:12:13 zmesdetect_m23[6413] DBG1 zm_detect.py:557 [Closing logs]
User avatar
iconnor
Posts: 3273
Joined: Fri Oct 29, 2010 1:43 am
Location: Toronto
Contact:

Re: URIError in ZM-Log after usage of zm_detect_py

Post by iconnor »

The web_js errors are coming from a browser... not ES. You might also check your javascript console log to get more info.
externo6
Posts: 1
Joined: Sat Aug 06, 2022 1:01 am

Re: URIError in ZM-Log after usage of zm_detect_py

Post by externo6 »

iconnor wrote: Tue Aug 02, 2022 10:08 pm The web_js errors are coming from a browser... not ES. You might also check your javascript console log to get more info.
I too am getting this, its unrelated to zm_detect from what I can see.

Console output:

Code: Select all

Uncaught URIError: URI malformed
    at decodeURIComponent (<anonymous>)
    at Object.<anonymous> (skins_classic_views_js_log-base-1658601075.js:45:19)
    at Function.each (skins_classic_js_jquery.min-base-1658601075.js:2:2976)
    at processRows (skins_classic_views_js_log-base-1658601075.js:44:6)
    at Object.<anonymous> (skins_classic_views_js_log-base-1658601075.js:37:17)
    at c (skins_classic_js_jquery.min-base-1658601075.js:2:28294)
    at Object.fireWith [as resolveWith] (skins_classic_js_jquery.min-base-1658601075.js:2:29039)
    at l (skins_classic_js_jquery.min-base-1658601075.js:2:79800)
    at XMLHttpRequest.<anonymous> (skins_classic_js_jquery.min-base-1658601075.js:2:82254)
    
Line in question:

Code: Select all

    row.Message = decodeURIComponent(row.Message);
I have many many lines in the log erroring as:

8/6/22, 1:03:45 AM UTC web_js 618270 ERR Uncaught URIError: URI malformed zm/cache/skins_classic_views_js_log-base-1658601075.js 45
8/6/22, 1:03:40 AM UTC web_js 618270 ERR Uncaught URIError: URI malformed zm/cache/skins_classic_views_js_log-base-1658601075.js 45
8/6/22, 1:03:35 AM UTC web_js 622957 ERR Uncaught URIError: URI malformed zm/cache/skins_classic_views_js_log-base-1658601075.js 45

To confirm, ubuntu 22.04 - v1.36.21

Thanks,
Godot
Posts: 13
Joined: Fri Jul 10, 2020 7:07 am

Re: URIError in ZM-Log after usage of zm_detect_py

Post by Godot »

At my Firefox i have an addon named "i don't care about cookies" which seems to be the Problem.

After deactivating this addon for the ZM the URIError doesnt occure again.

Thanks for the Hints!
User avatar
iconnor
Posts: 3273
Joined: Fri Oct 29, 2010 1:43 am
Location: Toronto
Contact:

Re: URIError in ZM-Log after usage of zm_detect_py

Post by iconnor »

Interesting! Some good info there. I'll install that addon and see if I can fix it.
Godot
Posts: 13
Joined: Fri Jul 10, 2020 7:07 am

Re: URIError in ZM-Log after usage of zm_detect_py

Post by Godot »

I'm sorry, but the problem actually still exists. So I don't know if the addon was actually the cause.

Any suggestions on how I can narrow down the problem more precisely?


i changed my System to Ubuntu 20.04.04, Python 3.8.10, pip22.2.2, OpenCV 4.6.0.
But still the same error occuring sometimes after an event starts...
Last edited by Godot on Mon Aug 08, 2022 9:42 am, edited 1 time in total.
Godot
Posts: 13
Joined: Fri Jul 10, 2020 7:07 am

Re: URIError in ZM-Log after usage of zm_detect_py

Post by Godot »

iconnor wrote: Tue Aug 02, 2022 10:08 pm The web_js errors are coming from a browser... not ES. You might also check your javascript console log to get more info.
Sorry, but how? :-D
Post Reply