ES 6.1.5 (object detection not working)
Posted: Wed Jan 06, 2021 4:16 pm
Hello - I updated to ES 6.1.5 and seem to be having some struggle with object detection. This was working fine previous to 6.1.5 and I understand the structure of objectconfig.ini has changes but believe I've made correct/updated changes leveraging ml_sequence.
For object detection; using: object, yolo4 model.
I had this working before ES6.1.5 across 3 monitors. The monitors are picking up events / recording but object detection seems to not work yet. I assume it's something with the new objectconfig.ini. Does anyone see something obvious I've goofed here?
For object detection; using: object, yolo4 model.
I had this working before ES6.1.5 across 3 monitors. The monitors are picking up events / recording but object detection seems to not work yet. I assume it's something with the new objectconfig.ini. Does anyone see something obvious I've goofed here?
Code: Select all
~
# Configuration file for object detection
# NOTE: ALL parameters here can be overriden
# on a per monitor basis if you want. Just
# duplicate it inside the correct [monitor-<num>] section
# You can create your own custom attributes in the [custom] section
[general]
# Please don't change this. It is used by the config upgrade script
version=1.2
# You can now limit the # of detection process
# per target processor. If not specified, default is 1
# Other detection processes will wait to acquire lock
cpu_max_processes=3
tpu_max_processes=1
gpu_max_processes=1
# Time to wait in seconds per processor to be free, before
# erroring out. Default is 120 (2 mins)
cpu_max_lock_wait=100
tpu_max_lock_wait=100
gpu_max_lock_wait=100
#pyzm_overrides={'conf_path':'/etc/zm','log_level_debug':0}
pyzm_overrides={'log_level_debug':5}
# This is an optional file
# If specified, you can specify tokens with secret values in that file
# and onlt refer to the tokens in your main config file
secrets = /etc/zm/secrets.ini
# portal/user/password are needed if you plan on using ZM's legacy
# auth mechanism to get images
portal=!ZM_PORTAL
user=!ZM_USER
password=!ZM_PASSWORD
# api portal is needed if you plan to use tokens to get images
# requires ZM 1.33 or above
api_portal=!ZM_API_PORTAL
allow_self_signed=yes
# if yes, last detection will be stored for monitors
# and bounding boxes that match, along with labels
# will be discarded for new detections. This may be helpful
# in getting rid of static objects that get detected
# due to some motion.
match_past_detections=no
# The max difference in area between the objects if match_past_detection is on
# can also be specified in px like 300px. Default is 5%. Basically, bounding boxes of the same
# object can slightly differ ever so slightly between detection. Contributor u/neillbell put in this PR
# to calculate the difference in areas and based on his tests, 5% worked well. YMMV. Change it if needed.
past_det_max_diff_area=5%
max_detection_size=90%
# sequence of models to run for detection
detection_sequence=object,face,alpr
# if all, then we will loop through all models
# if first then the first success will break out
detection_mode=object
# If you need basic auth to access ZM
#basic_user=user
#basic_password=password
# base data path for various files the ES+OD needs
# we support in config variable substitution as well
base_data_path=/var/lib/zmeventnotification
# global settings for
# bestmatch, alarm, snapshot OR a specific frame ID
frame_id=bestmatch
# this is the to resize the image before analysis is done
resize=800
# set to yes, if you want to remove images after analysis
# setting to yes is recommended to avoid filling up space
# keep to no while debugging/inspecting masks
# Note this does NOT delete debug images later
delete_after_analyze=yes
# If yes, will write an image called <filename>-bbox.jpg as well
# which contains the bounding boxes. This has NO relation to
# write_image_to_zm
# Typically, if you enable delete_after_analyze you may
# also want to set write_debug_image to no.
write_debug_image=no
# if yes, will write an image with bounding boxes
# this needs to be yes to be able to write a bounding box
# image to ZoneMinder that is visible from its console
write_image_to_zm=yes
# Adds percentage to detections
# hog/face shows 100% always
show_percent=yes
# color to be used to draw the polygons you specified
poly_color=(255,255,255)
poly_thickness=2
#import_zm_zones=yes
only_triggered_zm_zones=no
# This section gives you an option to get brief animations
# of the event, delivered as part of the push notification to mobile devices
# Animations are created only if an object is detected
#
# NOTE: This will DELAY the time taken to send you push notifications
# It will try to first creat the animation, which may take upto a minute
# depending on how soon it gets access to frames. See notes below
[animation]
# If yes, object detection will attempt to create
# a short GIF file around the object detection frame
# that can be sent via push notifications for instant playback
# Note this required additional software support. Default:no
create_animation=no
# Format of animation burst
# valid options are "mp4", "gif", "mp4,gif"
# Note that gifs will be of a shorter duration
# as they take up much more disk space than mp4
animation_types='mp4,gif'
# default width of animation image. Be cautious when you increase this
# most mobile platforms give a very brief amount of time (in seconds)
# to download the image.
# Given your ZM instance will be serving the image, it will anyway be slow
# Making the total animation size bigger resulted in the notification not
# getting an image at all (timed out)
animation_width=640
# When an event is detected, ZM it writes frames a little late
# On top of that, it looks like with caching enabled, the API layer doesn't
# get access to DB records for much longer (around 30 seconds), at least on my
# system. animation_retry_sleep refers to how long to wait before trying to grab
# frame information if it failed. animation_max_tries defines how many times it
# will try and retrieve frames before it gives up
animation_retry_sleep=15
animation_max_tries=4
# if animation_types is gif then when can generate a fast preview gif
# every second frame is skipped and the frame rate doubled
# to give quick preview, Default (no)
fast_gif=no
[remote]
# You can now run the machine learning code on a different server
# This frees up your ZM server for other things
# To do this, you need to setup https://github.com/pliablepixels/mlapi
# on your desired server and confiure it with a user. See its instructions
# once set up, you can choose to do object/face recognition via that
# external serer
# URL that will be used
#ml_gateway=http://192.168.1.183:5000/api/v1
#ml_gateway=http://10.6.1.13:5000/api/v1
#ml_gateway=http://192.168.1.21:5000/api/v1
#ml_gateway=http://10.9.0.2:5000/api/v1
#ml_fallback_local=yes
# API/password for remote gateway
ml_user=!ML_USER
ml_password=!ML_PASSWORD
# config for object
[object]
# If you are using legacy format (use_sequence=no) then these parameters will
# be used during ML inferencing
object_detection_pattern=(person|car|motorbike|bus|truck|boat)
object_min_confidence=0.3
object_framework=coral_edgetpu
object_processor=tpu
object_weights={{base_data_path}}/models/coral_edgetpu/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite
object_labels={{base_data_path}}/models/coral_edgetpu/coco_indexed.names
# If you are using the new ml_sequence format (use_sequence=yes) then
# you can fiddle with these parameters and look at ml_sequence later
# Note that these can be named anything. You can add custom variables, ad-infinitum
# Google Coral
tpu_object_weights={{base_data_path}}/models/coral_edgetpu/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite
tpu_object_labels={{base_data_path}}/models/coral_edgetpu/coco_indexed.names
tpu_object_framework=coral_edgetpu
tpu_object_processor=tpu
tpu_min_confidence=0.6
# Yolo v4 on GPU (falls back to CPU if no GPU)
yolo4_object_weights={{base_data_path}}/models/yolov4/yolov4.weights
yolo4_object_labels={{base_data_path}}/models/yolov4/coco.names
yolo4_object_config={{base_data_path}}/models/yolov4/yolov4.cfg
yolo4_object_framework=opencv
yolo4_object_processor=gpu
# Yolo v3 on GPU (falls back to CPU if no GPU)
yolo3_object_weights={{base_data_path}}/models/yolov3/yolov3.weights
yolo3_object_labels={{base_data_path}}/models/yolov3/coco.names
yolo3_object_config={{base_data_path}}/models/yolov3/yolov3.cfg
yolo3_object_framework=opencv
yolo3_object_processor=gpu
# Tiny Yolo V4 on GPU (falls back to CPU if no GPU)
tinyyolo_object_config={{base_data_path}}/models/tinyyolov4/yolov4-tiny.cfg
tinyyolo_object_weights={{base_data_path}}/models/tinyyolov4/yolov4-tiny.weights
tinyyolo_object_labels={{base_data_path}}/models/tinyyolov4/coco.names
tinyyolo_object_framework=opencv
tinyyolo_object_processor=gpu
[face]
face_detection_pattern=.*
known_images_path={{base_data_path}}/known_faces
unknown_images_path={{base_data_path}}/unknown_faces
save_unknown_faces=yes
save_unknown_faces_leeway_pixels=100
face_detection_framework=dlib
# read https://github.com/ageitgey/face_recognition/wiki/Face-Recognition-Accuracy-Problems
# read https://github.com/ageitgey/face_recognition#automatically-find-all-the-faces-in-an-image
# and play around
# quick overview:
# num_jitters is how many times to distort images
# upsample_times is how many times to upsample input images (for small faces, for example)
# model can be hog or cnn. cnn may be more accurate, but I haven't found it to be
face_num_jitters=1
face_model=cnn
face_upsample_times=1
# This is maximum distance of the face under test to the closest matched
# face cluster. The larger this distance, larger the chances of misclassification.
#
face_recog_dist_threshold=0.6
# When we are first training the face recognition model with known faces,
# by default we use hog because we assume you will supply well lit, front facing faces
# However, if you are planning to train with profile photos or hard to see faces, you
# may want to change this to cnn. Note that this increases training time, but training only
# happens once, unless you retrain again by removing the training model
face_train_model=cnn
#if a face doesn't match known names, we will detect it as 'unknown face'
# you can change that to something that suits your personality better ;-)
#unknown_face_name=invader
[alpr]
alpr_detection_pattern=.*
alpr_use_after_detection_only=yes
# Many of the ALPR providers offer both a cloud version
# and local SDK version. Sometimes local SDK format differs from
# the cloud instance. Set this to local or cloud. Default cloud
alpr_api_type=cloud
# -----| If you are using plate recognizer | ------
alpr_service=plate_recognizer
#alpr_service=open_alpr_cmdline
# If you want to host a local SDK https://app.platerecognizer.com/sdk/
#alpr_url=http://192.168.1.21:8080/alpr
# Plate recog replace with your api key
alpr_key=!PLATEREC_ALPR_KEY
# if yes, then it will log usage statistics of the ALPR service
platerec_stats=yes
# If you want to specify regions. See http://docs.platerecognizer.com/#regions-supported
#platerec_regions=['us','cn','kr']
# minimal confidence for actually detecting a plate
platerec_min_dscore=0.1
# minimal confidence for the translated text
platerec_min_score=0.2
# ----| If you are using openALPR |-----
#alpr_service=open_alpr
#alpr_key=!OPENALPR_ALPR_KEY
# For an explanation of params, see http://doc.openalpr.com/api/?api=cloudapi
#openalpr_recognize_vehicle=1
#openalpr_country=us
#openalpr_state=ca
# openalpr returns percents, but we convert to between 0 and 1
#openalpr_min_confidence=0.3
# ----| If you are using openALPR command line |-----
openalpr_cmdline_binary=alpr
# Do an alpr -help to see options, plug them in here
# like say '-j -p ca -c US' etc.
# keep the -j because its JSON
# Note that alpr_pattern is honored
# For the rest, just stuff them in the cmd line options
openalpr_cmdline_params=-j -d
openalpr_cmdline_min_confidence=0.3
## Monitor specific settings
# Examples:
# Let's assume your monitor ID is 999
[monitor-999]
# my driveway
match_past_detections=no
wait=5
object_detection_pattern=(person)
# Advanced example - here we want anything except potted plant
# exclusion in regular expressions is not
# as straightforward as you may think, so
# follow this pattern
# object_detection_pattern = ^(?!object1|object2|objectN)
# the characters in front implement what is
# called a negative look ahead
# object_detection_pattern=^(?!potted plant|pottedplant|bench|broccoli)
#alpr_detection_pattern=^(.*x11)
#delete_after_analyze=no
#detection_pattern=.*
#import_zm_zones=yes
# polygon areas where object detection will be done.
# You can name them anything except the keywords defined in the optional
# params below. You can put as many polygons as you want per [monitor-<mid>]
# (see examples).
my_driveway=306,356 1003,341 1074,683 154,715
# You are now allowed to specify detection pattern per zone
# the format is <polygonname>_zone_detection_pattern=<regexp>
# So if your polygon is called my_driveway, its associated
# detection pattern will be my_driveway_zone_detection_pattern
# If none is specified, the value in object_detection_pattern
# will be used
# This also applies to ZM zones. Let's assume you have
# import_zm_zones=yes and let's suppose you have a zone in ZM
# called Front_Door. In that case, all you need to do is put in a
# front_door_zone_detection_pattern=(person|car) here
#
# NOTE: ZM Zones are converted to lowercase, and spaces are replaced
# with underscores@3
my_driveway_zone_detection_pattern=(person)
some_other_area=0,0 200,300 700,900
# use license plate recognition for my driveway
# see alpr section later for more data needed
resize=no
detection_sequence=object,alpr
[ml]
# When enabled, you can specify complex ML inferencing logic in ml_sequence
# Anything specified in ml_sequence will override any other ml attributes
# Also, when enabled, stream_sequence will override any other frame related
# attributes
use_sequence = yes
# if enabled, will not grab exclusive locks before running inferencing
# locking seems to cause issues on some unique file systems
disable_locks= no
# Chain of frames
# See https://zmeventnotification.readthedocs.io/en/latest/guides/hooks.html#understanding-detection-configuration
# Also see https://pyzm.readthedocs.io/en/latest/source/pyzm.html#pyzm.ml.detect_sequence.DetectSequence.detect_stream
# Very important: Make sure final ending brace is indented
stream_sequence = {
'frame_strategy': 'most_models',
'frame_set': 'snapshot,alarm',
'contig_frames_before_error': 5,
'max_attempts': 3,
'sleep_between_attempts': 4,
'resize':800
}
# Chain of ML models to use
# See https://zmeventnotification.readthedocs.io/en/latest/guides/hooks.html#understanding-detection-configuration
# Also see https://pyzm.readthedocs.io/en/latest/source/pyzm.html#pyzm.ml.detect_sequence.DetectSequence
# Very important: Make sure final ending brace is indented
ml_sequence= {
'general': {
'model_sequence': 'object'
},
'object': {
'general':{
'pattern':'(person|dog|cat)',
'same_model_sequence_strategy': 'first' # also 'most', 'most_unique's
},
'sequence': [{
'object_config':'{{base_data_path}}/models/yolov4/yolov4.cfg',
'object_weights':'{{base_data_path}}/models/yolov4/yolov4.weights',
'object_labels': '{{base_data_path}}/models/yolov4/coco.names',
'object_min_confidence': 0.65,
'object_framework':'opencv',
'object_processor': 'gpu'
}]
}
}